Improved Asymmetric Locality Sensitive Hashing (ALSH) for Maximum Inner Product Search (MIPS)
نویسندگان
چکیده
Recently we showed that the problem of Maximum Inner Product Search (MIPS) is efficient and it admits provably sub-linear hashing algorithms. In [23], we used asymmetric transformations to convert the problem of approximate MIPS into the problem of approximate near neighbor search which can be efficiently solved using L2-LSH. In this paper, we revisit the problem of MIPS and argue that the quantizations used in L2-LSH is suboptimal for MIPS compared to signed random projections (SRP) which is another popular hashing scheme for cosine similarity (or correlations). Based on this observation, we provide different asymmetric transformations which convert the problem of approximate MIPS into the problem amenable to SRP instead of L2-LSH. An additional advantage of our scheme is that we also obtain LSH type space partitioning which is not possible with the existing scheme. Our theoretical analysis shows that the new scheme is significantly better than the original scheme for MIPS. Experimental evaluations strongly support the theoretical findings. In addition, we also provide the first empirical comparison that shows the superiority of hashing over tree based methods [21] for MIPS.
منابع مشابه
Asymmetric LSH (ALSH) for Sublinear Time Maximum Inner Product Search (MIPS)
We present the first provably sublinear time hashing algorithm for approximate Maximum Inner Product Search (MIPS). Searching with (un-normalized) inner product as the underlying similarity measure is a known difficult problem and finding hashing schemes for MIPS was considered hard. While the existing Locality Sensitive Hashing (LSH) framework is insufficient for solving MIPS, in this paper we...
متن کاملClustering is Efficient for Approximate Maximum Inner Product Search
Efficient Maximum Inner Product Search (MIPS) is an important task that has a wide applicability in recommendation systems and classification with a large number of classes. Solutions based on locality-sensitive hashing (LSH) as well as tree-based solutions have been investigated in the recent literature, to perform approximate MIPS in sublinear time. In this paper, we compare these to another ...
متن کاملIndexable Probabilistic Matrix Factorization for Maximum Inner Product Search
The Maximum Inner Product Search (MIPS) problem, prevalent in matrix factorization-based recommender systems, scales linearly with the number of objects to score. Recent work has shown that clever post-processing steps can turn the MIPS problem into a nearest neighbour one, allowing sublinear retrieval time either through Locality Sensitive Hashing or various tree structures that partition the ...
متن کاملOn Symmetric and Asymmetric LSHs for Inner Product Search
We consider the problem of designing locality sensitive hashes (LSH) for inner product similarity, and of the power of asymmetric hashes in this context. Shrivastava and Li (2014a) argue that there is no symmetric LSH for the problem and propose an asymmetric LSH based on different mappings for query and database points. However, we show there does exist a simple symmetric LSH that enjoys stron...
متن کاملAsymmetric Minwise Hashing
Minwise hashing (Minhash) is a widely popular indexing scheme in practice. Minhash is designed for estimating set resemblance and is known to be suboptimal in many applications where the desired measure is set overlap (i.e., inner product between binary vectors) or set containment. Minhash has inherent bias towards smaller sets, which adversely affects its performance in applications where such...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015